Co-produced natural ketolides methymycin and pikromycin inhibit bacterial growth by preventing synthesis of a limited number of proteins
نویسندگان
چکیده
Antibiotics methymycin (MTM) and pikromycin (PKM), co-produced by Streptomyces venezuelae, represent minimalist macrolide protein synthesis inhibitors. Unlike other macrolides, which carry several side chains, a single desosamine sugar is attached to the macrolactone ring of MTM and PKM. In addition, the macrolactone scaffold of MTM is smaller than in other macrolides. The unusual structure of MTM and PKM and their simultaneous secretion by S. venezuelae bring about the possibility that two compounds would bind to distinct ribosomal sites. However, by combining genetic, biochemical and crystallographic studies, we demonstrate that MTM and PKM inhibit translation by binding to overlapping sites in the ribosomal exit tunnel. Strikingly, while MTM and PKM readily arrest the growth of bacteria, ∼40% of cellular proteins continue to be synthesized even at saturating concentrations of the drugs. Gel electrophoretic analysis shows that compared to other ribosomal antibiotics, MTM and PKM prevent synthesis of a smaller number of cellular polypeptides illustrating a unique mode of action of these antibiotics.
منابع مشابه
Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides.
Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by ex...
متن کاملComplete Genome Sequence of Streptomyces venezuelae ATCC 15439, Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using PacBio Technology
Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikromycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequencing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene clusters.
متن کاملEvaluation of antibacterial and antioxidant activities of rainbow trout (Oncorhynchus mykiss) skin protein hydrolysate
The present study aimed to investigate antibacterial and antioxidant properties of proteins produced by the enzyme hydrolysis of rainbow trout (Oncorhynchus mykiss) skin produced by alcalase and flavourzyme enzymes. Antibacterial activity of skin protein hydrolysate were done by disc diffusion, agar pit diffusion and microdilution methods. Antioxidant activity of skin protein hydrolysate were i...
متن کاملEffects of Bacterial Strains to Inhibit Growth of Phytophthora pistaciae under Different Electrical Conductivities
Root and crown rot (gummosis) is known as the most destructive disease affecting pistachio in Iran. The efficiency of bacterial strains to reduce the growth rate of Phytophthora pistaciae was studied under different electrical conductivities (EC, 0, 2, 4, 8, 12 ds/m). Soil and rhizosphere samples were collected from pistachio growing regions in Kerman province, Iran, during 2011 - 2012. Overall...
متن کاملSynthesis and assessment of antibacterial effects of CdSe:Ag nanoparticles produced by chemical precipitation method
Chemical precipitation method was used in order to synthesize CdSe:Ag quantum dots (2-3 nm). Their Physical properties and characteristics were assessed by X-ray diffraction, ultra violet-visible spectrophotometer and TEM (Transmission Electron Microscope) and it was shown that the obtained CdSe:Ag quantum dots are cubic with high-quality. Antibacterial effects of CdSe:Ag nanoparticles against ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2017